Wunderlichips - publications

Wunderlichips Publications


3 publications found

2018
Csaba Forró, Greta Thompson-Steckel, Sean Weaver, Serge Weydert, Stephan Ihle, Harald Dermutz, Mathias J. Aebersold, Raphael Pilz, László Demkó, János Vörös. Modular microstructure design to build neuronal networks of defined functional connectivity. Biosensors and Bioelectronics

Theoretical and in vivo neuroscience research suggests that functional information transfer within neuronal networks is influenced by circuit architecture. Due to the dynamic complexities of the brain, it remains a challenge to test the correlation between structure and function of a defined network. Engineering controlled neuronal networks in vitro offers a way to test structural motifs; however, no method has achieved small, multi-node networks with stable, unidirectional connections. Here, we screened ten different microchannel architectures within polydimethylsiloxane (PDMS) devices to test their potential for axonal guidance. The most successful design had a 92% probability of achieving strictly unidirectional connections between nodes. Networks built from this design were cultured on multielectrode arrays and recorded on days in vitro 9, 12, 15 and 18 to investigate spontaneous and evoked bursting activity. Transfer entropy between subsequent nodes showed up to 100 times more directional flow of information compared to the control. Additionally, directed networks produced a greater amount of information flow, reinforcing the importance of directional connections in the brain being critical for reliable communication. By controlling the parameters of network formation, we minimized response variability and achieved functional, directional networks. The technique provides us with a tool to probe the spatio-temporal effects of different network motifs.

Yolanda Schaerli. Bacterial Microcolonies in Gel Beads for High-throughput Screening. Bio-protocol

High-throughput screening of a DNA library expressed in a bacterial population for identifying potentially rare members displaying a property of interest is a crucial step for success in many experiments such as directed evolution of proteins and synthetic circuits and deep mutational scanning to identify gain- or loss-of-function mutants. Here, I describe a protocol for high-throughput screening of bacterial (E. coli) microcolonies in gel beads. Single cells are encapsulated into monodisperse water-in-oil emulsion droplets produced with a microfluidic device. The aqueous solution also contains agarose that gelates upon cooling on ice, so that solid gel beads form inside the droplets. During incubation of the emulsion, the cells grow into monoclonal microcolonies inside the beads. After isolation of the gel beads from the emulsion and their sorting by fluorescence activated cell sorting (FACS), the bacteria are recovered from the gel beads and are then ready for a further round of sorting, mutagenesis or analysis. In order to sort by FACS, this protocol requires a fluorescent readout, such as the expression of a fluorescent reporter protein. Measuring the average fluorescent signals of microcolonies reduces the influence of high phenotypic cell-to-cell variability and increases the sensitivity compared to the sorting of single cells. We applied this method to sort a pBAD promoter library at ON and OFF states (Duarte et al., 2017).

2017
José M. Duarte, Içvara Barbier, and Yolanda Schaerli. Bacterial microcolonies in gel beads for high-throughput screening of libraries in synthetic biology. ACS Synth. Biol.

Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g. being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclona bacterial microcolonies (e.g. expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.